Application of Heme Oxygenase-1, Carbon Monoxide and Biliverdin for the Prevention of Intestinal Ischemia/Reperfusion Injury

نویسندگان

  • Atsunori Nakao
  • David J Kaczorowski
  • Ryujiro Sugimoto
  • Timothy R. Billiar
  • Kenneth R. McCurry
چکیده

Intestinal ischemia/reperfusion (I/R) injury occurs frequently in a variety of clinical settings, including mesenteric artery occlusion, abdominal aneurism surgery, trauma, shock, and small intestinal transplantation, and is associated with substantial morbidity and mortality. Although the exact mechanisms involved in the pathogenesis of intestinal I/R injury have not been fully elucidated, it is generally believed that polymorphonuclear neutrophils, pro-inflammatory cytokines, and mediators generated in the setting of oxidative stress, such as reactive oxygen species (ROS), play important roles. Heme oxygenase (HO) is the rate-limiting enzyme that catalyzes the degradation of heme into equimolar quantities of biliverdin and carbon monoxide (CO), while the central iron is released. An inducible form of HO (HO-1), biliverdin, and CO, have been shown to possess generalized endogenous anti-inflammatory activities and provide protection against intestinal I/R injury. Further, recent observations have demonstrated that exogenous HO-1 expression, as well as exogenously administered CO and biliverdin, have potent cytoprotective effects on intestinal I/R injury as well. Here, we summarize the currently available data regarding the role of the HO system in the prevention intestinal I/R injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heme oxygenase system in hepatic ischemia-reperfusion injury.

Hepatic ischemia-reperfusion injury (IRI) limits access to transplantation. Heme oxygenase-1 (HO-1) is a powerful antioxidant enzyme which degrades free heme into biliverdin, free iron and carbon monoxide. HO-1 and its metabolites have the ability to modulate a wide variety of inflammatory disorders including hepatic IRI. Mechanisms of this protective effect include reduction of oxygen free rad...

متن کامل

Heme oxygenase-1: a novel therapeutic target for gastrointestinal diseases

Heme oxygenase-1 (HO-1) is the rate-limiting enzyme in the catabolism of heme, followed by production of biliverdin, free iron and carbon monoxide (CO). HO-1 is a stress-responsive protein induced by various oxidative agents. Recent studies demonstrate that the expression of HO-1 in response to different inflammatory mediators may contribute to the resolution of inflammation and has protective ...

متن کامل

Role of carbon monoxide and biliverdin in renal ischemia/reperfusion injury.

Heme oxygenase (HO) isoforms catalyze the conversion of heme to carbon monoxide (CO) and biliverdin/bilirubin with a concurrent release of iron. There is strong evidence that HO activity and products play a major role in renoprotection, however the exact molecular mechanisms underlying the beneficial effects exerted by this pathway are not fully understood. This review is aimed at illustrating ...

متن کامل

Heme oxygenase-1 expression in disease states.

Heme oxygenase-1 (HO-1) is an enzyme which catalyzes the rate-limiting step in heme degradation resulting in the formation of iron, carbon monoxide and biliverdin, which is subsequently converted to bilirubin by biliverdin reductase. The biological effects exerted by the products of this enzymatic reaction have gained much attention. The anti-oxidant, anti-inflammatory and cytoprotective functi...

متن کامل

Cytoprotective role of heme oxygenase-1 in liver ischemia reperfusion injury.

Ischemia/reperfusion (I/R) injury is the main cause of graft dysfunction and failure in vascular occlusion both during liver surgery and during liver transplantation. The pathophysiology of hepatic ischemia-reperfusion includes a number of mechanisms including oxidant stress that contribute to various degrees to the overall organ damage. Heme oxygenases (HO) are essential enzymes which degrade ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Clinical Biochemistry and Nutrition

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2008